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For most wireless sensor network (WSN) applications, the positions of the sensor
nodes need to be known. GPS has not fit into WSN very well due to its price,
power consumption, accuracy, and limitations in its operating environment. Hence,
the last decade brought about a large number of proposed methods for WSN node
localization. They show tremendous variation in the physical phenomena they use,
the signal properties they measure, the resources they consume, as well as in in
their accuracy, range, advantages and limitations. This paper provides a high-level,
comprehensive overview of this very active research area.
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1. Introduction

Wireless sensor networks (WSN) are typically used to measure one or more physical
phenomena in a widely distributed area. In most WSN applications, the measured
sensor values are tagged with both a timestamp and the location of a given sensor.
Hence, the positions of the sensor nodes need to be known. The required accuracy
of this location information is completely application-dependent. A structural mon-
itoring system might require centimeter-scale accuracy, while a forest fire warning
system works well with a hundred-meter of uncertainty.

Accuracy is only one of the design drivers of localization. Since sensor nodes
run on battery power, any WSN application or service needs to be energy-efficient,
and localization is no exception. Many WSN applications rely on a large number
of sensors; hence, per-node monetary cost is an important consideration as well.
The speed of localization is also an important factor. It may be fine to spend
minutes localizing nodes for a static, long-term deployment since it only needs to
be done once. For mobile applications, on the other hand, the localization needs to
keep up with the mobility. Finally, the operating environment of the system puts
significant constraints on localization as well. Some approaches work better indoors
than outdoors, or in urban areas, caves, forests, or even under water. Hence, there
is no universal solution to localization, and we cannot expect one to emerge any
time soon, if ever.
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Nevertheless, one might argue that GPS has made other approaches obsolete
as far as outdoor localization is concerned. Indeed, GPS has made tremendous
progress in the past decade while the WSN localization research summarized in
this paper was carried out, yet it still does not meet the design constraints of many
WSN applications. Low-cost GPS receivers, such as the ones that can be found in
almost all smartphones today, exhibit tens of meters of typical error. Higher-end
GPS chips can cost hundreds of dollars, use 50 mW of power or more, and provide
up to 1 m accuracy with an unobstructed view of the sky. This is in stark contrast
with the goal of many WSN systems to have nodes that costs tens of dollars and run
for months or even years on a single charge. Furthermore, some WSN applications
need sub-meter accuracy (Simon et al. 2004) that only differential or survey-grade
GPS equipment can provide, but at the prohibitively high cost of thousands of
dollars. Hence, this paper focuses on localization techniques other than GPS. The
interested reader is referred to (Elliott 2005) for an excellent overview of GPS-based
localization.

WSN node localization approaches are typically characterized as either range-
free or range-based. Most range-free techniques rely on radio connectivity alone
and try to map the topology of the communication network to physical coordinates.
One might consider such range-free methods as simply extreme cases of range-based
approaches where the range is estimated relative to the maximum communication
range of the radio using a single bit: 1 means within range, 0 means out of range.
Nevertheless, range-free techniques are quite inaccurate as the communication range
is highly variable and dependent on the environment, due primarily to non line-of-
sight (LOS) conditions, multipath fading, and hardware/antenna variations. Errors
of 50-100% of the radio range are common (He et al. 2003). The advantages of
range-free methods include simplicity and low cost, as no additional hardware is
necessary. A representative range-free method is presented in (He et al. 2003).

Most WSN localization techniques are infrastructure-free; that is, no additional
equipment is available other than the sensor nodes themselves to carry out the
localization. Sometimes the locations of a few nodes, called the anchors, are known,
and hence, the resulting coordinates are absolute. Otherwise, the node locations
can only be determined relative to one another.

The term self localization is sometimes used to indicate that the WSN itself per-
forms the localization of its nodes. For static WSN deployments, one can get around
performing self localization. Many times, it is feasible to deploy the sensors in pre-
surveyed locations. These locations can be established at or before deployment time
using external equipment. When higher accuracy is required, for instance, a differ-
ential GPS could even be used, since its cost and power requirements are not part
of the WSN itself.

The goal of many WSN applications is to locate something such as a moving
object or source of a signal. Such approaches are often referred to as target lo-
calization, source localization, or simply localization. In contrast with the subject
of this article, the sensor nodes themselves are assumed to have known locations
in these systems. To disambiguate the term localization when it is not clear from
context, the expression self localization will be used for WSN node localization in
this article.

The rest of this paper focuses almost exclusively on range-based self localization
in WSNs. First, it surveys different ranging methods. The subsequent section re-
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Figure 1. Ranging Ontology.

views the broad spectrum of localization algorithms that transform range estimates
into coordinates. This is followed by a brief description of radio interferometric
localization, a representative example that demonstrates the complexities of this
important area. A summary of possible future trends concludes the paper.

2. Ranging

Probably the most important factor that differentiates between the various ranging
approaches is the physical phenomenon utilized. Figure 1 provides an ontology of
the different methodologies. In WSNs, the use of radio frequency (RF) signals is
most common, as a radio transceiver is typically available on most sensor nodes.
RF propagation, however, presents significant challenges to accurate ranging on
resource-constrained, low-cost hardware. Radio waves propagate at the speed of
light, making timing-based approaches extremely challenging. WSN transceivers
operate at relatively high frequencies – hundreds of megahertz to multiple giga-
hertz – requiring high sampling rates and significant computing power to carry
out ranging-specific RF signal processing. Conversely, the simplest technique based
on received RF energy is highly susceptible to multipath fading and other error
sources.

Many of these problems are avoided by utilizing acoustic signals instead. The
speed of sound is six orders of magnitude slower than the speed of light, so most
acoustic techniques measure the propagation time between pairs of nodes. As the
distributed sensor nodes do not share a global clock, they either need to rely on a
time synchronization service or provide some other means to create a shared time
reference between the source and the destination of the acoustic signal.

Ultrasonic systems are typically very accurate, as it is easy to detect the ar-
rival time of a high frequency signal, resulting in centimeter-level ranging accu-
racy (Priyantha et al. 2000, Oberholzer et al. 2010). However, the practical range
of such systems is limited to 10 or so meters, as high frequency signals are quickly
attenuated in the air. Also, ultrasonic transducers are directional, so multiple trans-
ducers are needed per node to provide 360-degree coverage. On the other hand, its
beneficial side effect is the capability to supply bearing information along with the
range estimate. Acoustic methods are susceptible to errors due to non-LOS condi-
tions. If, however, there is LOS, then multipath propagation is not a problem, as
the LOS component will always arrive first. As noise and wind have detrimental
effects, ultrasonic approaches are mainly used in indoor settings.

The audible acoustic range has also been utilized for ranging in WSNs. To com-
pensate for the lower frequency, a linear chirp signal is transmitted. Cross correla-
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tion or a matched filter on the receiver side provides precise Time of Arrival (ToA)
detection (Girod et al. 2006). These systems have longer range (up to 100 m de-
pending on the sound energy utilized), but somewhat less accuracy than ultrasonic
methods. While microphones are small, speakers that can generate high enough
sound energy for a reasonable range need to be bigger and require more power.
Consequently, a practical system would need to be asymmetrical, with small, pas-
sive sensor nodes listening for signals from one or more larger transmitters. The fact
that an audible signal is used makes the appeal of these techniques quite limited.

Camera networks are a subclass of WSNs in which the sensors themselves pro-
vide a way for self localization and self orientation (also called calibration). Cam-
eras with overlapping views can observe a set of feature points and deduce their
relative positions. However, the obtained coordinates are relative to a scaling fac-
tor (Mantzel et al. 2004) that needs to be determined via other means. In simulta-
neous localization and tracking, a moving object is observed and tracked instead of
a set of feature points (Funiak et al. 2006). The numerous assumptions and initial
results have not yet allowed for practical applications.

There are other less frequently-used physical phenomena utilized for ranging in
WSNs. Lighthouse, an early innovative optical system, applied two directional light
sources rotating in orthogonal planes as a single anchor node (Römer 2003). Nodes
equipped with light sensors measured the time they were exposed to the light and
were able to determine their ranges to the axis of rotation. Recently, a magnetic field
induced by coils on the Earth’s surface was utilized to track underground animals
tagged with magnetometers (Markham et al. 2010). For underwater localization,
water pressure provides very accurate depth estimates. Air pressure is more variable,
but it can be used to estimate elevation change in the short term.

Of special relevance to practical localization/tracking in WSNs is the fact that
the price of Inertial Measurement Units (IMU) is dropping. For example, the $600
MEMS-based Analog Devices ADIS16360 unit has a tri-axis accelerometer and
a tri-axis gyroscope, performs the necessary digital signal processing and other
computations on-board, and provides a digital interface. Although IMUs cannot be
used alone because of error accumulation, they can be very useful in multi-modal
ranging of mobile sensors. We can expect to see them appear in higher-end WSNs
in the near future.

The overwhelming majority of ranging techniques in WSNs rely on RF or acous-
tic signals. However, there is a lot of variation based on which attributes of the signal
are being measured to deduce range information. Figure 1 summarizes the different
approaches.

(a) Time

Measuring time is perhaps the most natural way to estimate range since the
speed of signal propagation is well-known. Acoustic systems rely on time measure-
ments almost exclusively, as the speed of sound is low enough to process the signal
on even severely resource-constrained sensor nodes. Measuring Time of Flight (ToF)
is the most widely used technique. In the usual arrangement, a sensor node broad-
casts a radio message to indicate the start of the measurement procedure and then
immediately emits a characteristic acoustic signal. When neighboring nodes receive
the radio message, they start a timer and begin sampling their microphones. When
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they detect the arrival of the sound, they stop the timer. The elapsed time and
the known speed of sound provide a range estimate. As the sending and receiving
of the radio message takes a negligible amount of time compared to the propaga-
tion time of the acoustic signal, it is usually disregarded. A more significant source
of error is the temperature dependence of the speed of sound. This can easily be
compensated for by measuring the temperature and adjusting the speed used in
calculations accordingly. As acoustic ranging is sensitive to noise, measurements
are usually performed multiple times to enable outlier elimination and averaging.
An advantage of ToF ranging is that the WSN does not need an explicit time syn-
chronization service. The radio message at the beginning of the procedure provides
a shared time reference.

A technique that requires time synchronization but does away with the need for
radio messages is based on the Time Difference of Arrival (TDoA) principle. Here,
multiple nodes detect the same acoustic event and take the pairwise difference in
arrival times. The measured TDoA provides the distance difference of the two nodes
from the source; hence, it defines a hyperbola (in 2D). The unknown positions,
however, are the foci of the hyperbola, making the determination of those locations
complicated. Thus, the TDoA approach is a better fit for determining the location
of acoustic sources by measuring the TDoA between known locations than for node
self-localization. If the sensor node has multiple microphones, then the TDoA on
multiple channels provides a bearing estimate to the source. This can be used for
self-localization, but again works better for source localization.

The high speed of light makes timing-based RF ranging extremely challenging.
High-end WSNs for outdoor deployments may be able to afford the relatively high
cost, high power, and somewhat limited accuracy of GPS, but most WSN applica-
tions must rely on other methods.

Nanosecond-precision time synchronization in WSNs is out of the question, mak-
ing two-way ToF ranging the only feasible approach. In this scheme, one node
transmits a radio signal and simultaneously starts a timer. When the second node
detects the signal, it immediately transmits a signal back to the first node which
stops its timer when it detects the arrival of the return signal. The delay on the
second node between reception and retransmission must be known (or measured)
very precisely, and it is subtracted from the measured time. Then, the delay and
the speed of light are used to estimate the range.

The most well-known RF technology that utilizes two-way ToF ranging is Ul-
tra Wideband (UWB). UWB is based on sending high-bandwidth pulses that are
short enough to avoid multipath fading, as there is typically no time overlap be-
tween the LOS signal and reflections. Hence, the technology works well in indoor
environments, providing centimeter-scale precision. UWB localization systems have
an asymmetrical architecture: sophisticated base stations serve a potentially large
number of inexpensive tags. A disadvantage of this technology is its high cost due
to the base stations. This has prevented the application of UWB in WSNs so far.

The conventional wisdom is that custom hardware is necessary for RF 2-way
ToF ranging in WSNs. Lanzisiera et al. have built a sensor node that is even able
to achieve reasonable accuracy in such unfavorable RF environments as a coal
mine under LOS conditions (Lanzisera et al. 2006). Recently, however, Mazomenos
et al. demonstrated meter-scale accuracy using COTS sensor nodes and actual
radio messages (Mazomenos et al. 2011). They estimated the extra delay of the
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measurement by placing the two nodes right next to each other while performing
a large number of ranging operations and considering the actual propagation time
to be zero. They then moved the nodes apart and repeated the ranging operations.
By averaging the results and subtracting the estimated additional delay, they were
able to achieve sub clock-period timing accuracy, an absolute necessity considering
that the RF signal travels almost 20 meters during a single clock period on the
particular hardware used (16 MHz oscillator). Even though this technique has not
been used to localize a WSN deployment yet, the reported ranging results are very
encouraging.

(b) Amplitude/Power

Most radio transceiver chips can supply an estimate of the received RF power
in a given band via the Received Signal Strength Indicator (RSSI) signal. Given
the known transmit power and a propagation model, the RSSI can be used to
estimate the range accordingly. This technique is extremely simple and cheap (in
terms of resources required), but unfortunately, it is very inaccurate. One can expect
about 10-20% average error in outdoor deployments and worse indoors. RF signal
propagation is highly environment-dependent and dynamic. The actual path loss
observed can be significantly different from what the propagation model predicts.
Most systems, therefore, use a set of fixed base stations at known locations and
build a map of RSS values for each such beacon in the entire coverage area at
deployment time. Localization is then performed by measuring the set of RSS values
and finding the closest match in the RSS map. This approach provides much better
accuracy, but at a high deployment cost. For practical applications, high beacon
density is required. Also, most environments are dynamically changing, limiting
the achievable precision. Note that this is not a strictly range-based method, as the
ranges to the beacons are never actually computed, but due to the large number of
measurements required, it is closer in spirit to range-based methods than to simple
connectivity-based range-free approaches.

There are commercially available systems based on this technique. Cisco Location-
Based Services (CISCO 2008) provide asset tracking on top of their regular WiFi
infrastructure. While it is difficult to quantify the accuracy of such a system de-
ployed in a large heterogeneous environment – a hospital, for example – the typical
error for a real world system is reported to be less than 10 meters.

(c) Phase

Measuring the phase of a stationary periodic signal between a transmitter and
a receiver provides information about their distance. This method, however, comes
with its own set of challenges. If the wavelength is shorter than the measured range,
the phase only provides the distance modulo the wavelength. Hence, the measure-
ment needs to be carried out at multiple frequencies, and a set of Diophantine
equations needs to be solved in the ideal case. In practice, noisy measurements
mandate an optimization procedure instead. Without precise time synchronization,
the unknown transmit phase needs to be compensated for.

A variant of this approach avoids both of these problems by using multiple
antennas on the same node and measuring the received phase difference between
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them. This gives a bearing estimate to the source of the RF signal. Phase-based ap-
proaches are all sensitive to multipath, as each additional propagation path causes
an extra phase shift, resulting in possibly significant error. This is especially prob-
lematic when the nodes are on the ground, as ground reflections at low angles of
incidence can significantly attenuate the LOS signal.

3. Localization

Localization is usually a two-step process: first, one or several ranging methods
are employed to collect data from the physical environment, then, an algorithm
computes the location of the nodes from the collected data. In this section, we
focus on the various localization algorithms. To better grasp the complexity of this
task, we first establish an ontology of the localization algorithm based on

• the type of ranging data (time, power, connectivity, multi-modal, etc.),

• the error distribution of the ranging data (under or over estimates, noise),

• the amount of a priori information (anchor nodes, planar deployment),

• the mobility of the nodes (static vs. mobile),

• the computational algorithm (direct formula, optimization, etc.), and

• the execution environment (centralized vs. distributed, mixed).

From just this short list, one can already see that the field of WSN localization
algorithms is very diverse. There is no single algorithm that is universally applicable.

(a) Ranging data

The localization algorithm takes measurement data that has been collected in
the network. This ranging data can be of various types, as we have seen in the previ-
ous section, but it is important to realize that completely different ranging methods
can produce similar ranging information. For example, radio signal strength-based
distance estimation and acoustic time of flight measurement can both produce a
distance estimate between two nodes, although with completely different error char-
acteristics. At this point, we do not care how particular ranging data was collected,
only what information it provides about the locations of the nodes.

Time of flight (mainly acoustic) measurements, UWB ranging, and radio signal
strength indicators all give an estimate of the distance between two nodes. Usually
a preprocessing step is necessary to calculate this distance estimate (based on some
physical model), but the processing step only involves the two nodes participating
in the measurement.

The error characteristics of the measured distance depend on the type of ranging
employed. For example, acoustic time of flight ranging usually does not produce
shorter distances than the actual one, however longer distances are common because
of blocked line of sight and echoes (Whitehouse et al. 2005). Radio signal strength-
based ranging has a completely different characteristic: it is more precise for shorter
distances than for longer ones, since the intensity of the signal decreases with the
square of the distance (or higher in urban environments) (Saxena et al. 2008).
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The error in the ranging data can be significantly reduced by performing multiple
measurements, although this mandates trading measurement time for precision.

There exist ranging techniques that do not produce pairwise distances; instead,
they give estimates of distance differences. From time difference of arrival data
measured with an acoustic sensor, or in radio interferometry with anchor nodes,
it is possible to calculate the distance difference dAB − dAC between three nodes
A, B and C. Time or phase difference of arrival measurements can also be used to
estimate the bearing of sensors relative to one another.

Many ranging methods can produce several types of ranging data, and local-
ization algorithms can utilize ranging data coming from different modalities. This
improves the performance of the localization, since the error characteristics of these
modalities are usually different.

(b) A priori information and mobility

It is possible to calculate the relative positions of sensors, but in most cases, we
need the coordinates or locations of the sensors relative to the environment and not
to each other. Therefore, localization techniques rely on some a priori information.
This information can come from specially equipped nodes (e.g. with GPS) or from
a database of known locations of anchor nodes. Even if the network is static, it is
much easier to survey just a few strategically placed anchor nodes than to determine
the exact positions of all sensors.

Many published works assume that the network is located on a 2D plane, which
significantly simplifies the design of the localization algorithm and can produce more
stable and precise results. This is a good approximation of current deployments,
where the spatial diversity in the Z-axis (elevation) is usually significantly smaller
than in other axes. If the positions of the sensors are not constrained to the plane
(or their elevation is not limited), then localization algorithms tend to suffer from
instability, since they have more freedom to find sensor positions that better match
the measured ranges but are farther from the true locations of the sensors (Lédeczi
et al. 2005).

Localization of mobile sensor nodes is more difficult than that of static ones. So
far, we have assumed that all ranging data describes the same static deployment
and environment. If the nodes are mobile or the environment changes, then the
measurement time needs to be recorded together with the range estimates. In effect,
the localization has to be performed in 4 dimensions: 3D space and time. Unlike
distance, time can be measured very precisely (relative to the speed of mobility)
with wireless sensors (Maróti et al. 2004), so “ranging” errors are relatively small in
this dimension. The mathematical formulas describing the physical system become
more complicated, but the same algorithmic techniques can be applied as for static
deployments.

We can contrast this static approach to mobile localization with that of on-
line localization, where the positions of the sensors need to be known immediately
or as soon as possible. Here, there is no time to record all measurements and
perform post-processing; instead, we must maintain an estimate of the current
system and perform localization based on changes, for example using extended
Kalman filters (Kusy et al. 2007a). The mathematical model of the movement of
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sensors is a very important piece of a priori information (e.g. the maximum speed),
which impacts the precision and response time of the system.

Another source of a priori information can be surveyed “maps” of the environ-
ment. This can include the expected RSSI values of messages coming from beacon
nodes, or the intensity of light, sound, or other characteristics of a particular place.
This information is recorded at some granularity and stored in a database. The po-
sition estimate of the sensor can be calculated by finding that pre-surveyed position
which best matches the measured values (Li et al. 2005, Kim et al. 2010).

(c) Localization algorithm

Probably the most important design choice is whether the algorithm is executed
within the WSN, or all ranging data is collected in a centralized place where a com-
puter with more resources can calculate the locations. If the ranging data needs to
be collected, then a message routing protocol must be employed, which comes with
its own problems (increased delay, increased energy consumption, reliability issues,
etc.). On the other hand, most of the algorithms we are going to discuss cannot
be executed on the sensor nodes because of the lack of adequate computational or
storage resources.

The easiest case is when the location of a sensor can be calculated by a mathe-
matical formula, e.g. from measured distances to known positions. This localization
method can be realized in the network; for example, if the anchor nodes are densely
deployed and know their position, then every other node could potentially measure
the ranges to three or more anchors and calculate their own position. The same
approach could be used for distance differences if enough measurements are known
and they have low error.

In general, measured range values have significant errors and are usually not in
a form that can be used to derive a closed mathematical formula for the position
of the sensors. Therefore, optimization techniques are used to obtain the estimated
location with the least amount of error with respect to measured ranges. Every op-
timization problem has a goal function which needs to be minimized or maximized.
This goal function depends on the type of ranging data, but in general can be clas-
sified as either 1) representing the localization error, or 2) counting the number of
supporting measurements for a given location estimate.

The presence of measurement errors poses a significant challenge to the op-
timization approach, since a single bad measurement with large error can skew
the results. To counter this problem, one can use the number of supporting mea-
surements as a goal function. For example, the common least squares range error
estimate can be replaced by the number of measured ranges which support (or are
close enough) to the calculated distances between the estimated positions. This goal
function is resistant to bad measurements, but it is not continuous and very hard
to solve. Genetic algorithms and interval arithmetic-based optimization algorithms
were found to be effective when properly guided.

The easiest optimization approach is the so-called spring model, where the un-
known variables are the location coordinates of the sensors, and the goal function
is the sum of the errors between the measured ranges and the calculated distances.
Variations of this technique have been used in many localization approaches (one
can even treat connectivity-based localization in this way), but in general, this
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approach is very sensitive to the initial location estimates of the sensors. The opti-
mization procedure can be performed centrally by a nonlinear optimizer, or via a
genetic algorithm, or it can be executed in the network where each node only needs
to know its own position and those of its neighbors.

The optimization approaches can be adapted to various ranging data, including
distance differences, signal phase, angle of arrival, received signal strength, etc.
The most important advantage of the optimization approach is that it can easily
incorporate measurement data with different modalities, at least at the model level.
However, the resulting optimization problems are usually very hard to solve, as the
corresponding goal function is not linear and has many local minima.

Map-based localization requires a (usually large) database of previous measure-
ments to estimate the locations of sensors. Instead of using mathematical formulae
to calculate the goal function, this approach uses the database to find the number
of supporting measurements for any given location. Usually this process is very
fast (much faster than the optimization method) and can be executed indepen-
dently for each node. Very good localization results can be achieved with detailed
maps (Patwari et al. 2005).

4. A Representative Approach

To illustrate the challenges of self localization using the typical resource-constrained
hardware platforms of WSNs, we selected the Radio Interferometric Positioning
System (RIPS) as a representative example (Maróti et al. 2005).

RIPS is a phase measurement-based RF localization method specifically de-
signed for WSNs. It avoids having to process high-frequency RF signals directly
by relying on radio interferometry in a unique way. The novel idea behind radio
interferometric ranging is to utilize two transmitters to create an interference signal
directly. If the frequencies of the two emitters are almost the same, then the com-
posite signal will have a low frequency envelope defined by the difference of the two
transmit frequencies. While this low frequency is not an actual spectral component
of the signal (only the amplitude of the signal is modulated at that rate), non-linear
transformation and filtering can produce a signal with that fundamental frequency.
The RSSI signal available on most RF transceivers does exactly that, and it can
be sampled and processed on the resource-constrained sensor nodes to estimate its
phase.

The transmit phases of the two transmitters, however, are unknown. To measure
these or to synchronize the nodes to transmit in-phase is not feasible in WSNs today.
However, taking the relative phase offset of the signal at two receivers eliminates the
transmit phase. While the receivers need to be time synchronized in this scheme,
the required precision is determined by the frequency of the RSSI signal and not
that of the original RF signal which is several orders of magnitude higher.

The measured phase difference is a function of the relative positions of the
four nodes involved (two transmitters and two receivers) and the carrier frequency.
Therefore, this method is not pairwise ranging. It provides an estimate of the linear
combination of the pairwise ranges of the four nodes involved, referred to as the
quad-range. The following equation is shown to be true in (Maróti et al. 2005):
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Figure 2. Radio Interferometric Ranging.

dABCD mod λ = ϕCD
λ

2π
, (4.1)

where dABCD = dAD+dBC−dAC−dBD is the quad-range, λ is the carrier wave-
length, and ϕCD is the measured relative phase offset of the RSSI signal between
nodes C and D.

To resolve the modulo ambiguity, ranging needs to be repeated at multiple
carrier frequencies. As a quad-range estimate applies to a set of four nodes, it is
not enough to simply compute their relative positions. In fact, at least six nodes
are necessary to obtain enough equations to solve for the location of all nodes in
2D (Maróti et al. 2005).

Noise, multipath, and other measurement errors have an interesting effect on
the distribution of range estimates because of the modulo factor. A typical estimate
will either be very close to the true range or it will be an integer multiple of the
wavelength away from it. The distribution can be considered a superposition of
Gaussians, with their means full wavelengths from each other.

To support moderate multipath environments where a substantial fraction of
range estimates have large errors, RIPS performs range estimation and localization
in an iterative manner (Kusy et al. 2006). Obtaining the range from the noisy
phase measurements at various carrier frequencies is a least squares optimization
procedure. Then, a genetic algorithm performs the localization, minimizing an error
function. This function is not defined as a simple average quad-range error. Instead,
it is defined as the combination of a quad-range error measure and the number
of bad range estimates. Hence, large outliers cannot distort the results if there
are enough reasonable range estimates. The resulting location estimates are used
in a new round of ranging estimation: the least squares optimization is repeated
using the same phase measurements, but the search is constrained by the current
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node location estimates. This is repeated for several iterations and allows the range
estimation to recover from a few bad phase measurements due to multipath. They
may cause the global minimum of the least squares estimate to be completely wrong,
but the iterative procedure can find a local minimum corresponding to the correct
solution.

While RIPS is admittedly complex and hence, relatively slow (i.e., a full quad-
range measurement at multiple frequencies takes a few tenths of a second), its com-
bination of high accuracy (centimeter scale) and long effective range (even longer
than the radio communication range) is unparalleled in WSNs. The most significant
attribute of RIPS is that it measures the phase of a low-frequency signal, yet the
measured phase corresponds to the wavelength of the high-frequency carrier signal.
RIPS has been implemented on Mica2 nodes (Dutta et al. 2005), a low cost ($80),
severely resource-constrained (4 kB RAM) COTS sensor node. The demonstrated
accuracy is centimeter scale, while the maximum range is about 160 meters. In
other words, the accuracy is similar to ultrasonic methods at an order of magni-
tude longer range and with no extra hardware requirements. Its range is similar to
RSSI-based techniques with two orders of magnitude better accuracy. It also com-
pares favorably with GPS. Low-cost GPS receivers provide 2-3 orders of magnitude
higher error and require an extra chip per node, increasing the size, price, and power
consumption of the mote. Conversely, GPS provides absolute coordinates in a short
amount of time. The main limitation of RIPS is its susceptibility to multipath.
Hence, it does not currently work indoors.

Many variations of RIPS have appeared in literature. Triploc groups together
the two transmitters and one of the receivers into an anchor “node” that forms
a quasi antenna array (Amundson et al. 2010). As three of the four nodes are at
known locations within a half wavelength of each other, a single phase measurement
at a single carrier frequency constrains a receiver to a hyperbola in 2D. If this
unknown receiver is not too close to the anchor (at least two wavelengths away),
then the asymptote of the hyperbola provides an accurate approximation of the
bearing to the node from the anchor. In other words, a sensor node with its single
antenna makes a phase measurement of the RSSI signal, and it alone supplies its
bearing from a known point. Hence, it can determine its location from two such
measurements using triangulation, provided it is not collinear with the two anchors.
Furthermore, an anchor here is nothing more than three sensor nodes placed next
to each other with no extra hardware requirement.

RIPS has been shown to be able to estimate the speed of a moving sensor node
by measuring its Doppler shift (Kusy et al. 2007b). This is remarkable because a
node moving at 1 m/s induces less than 1 Hz Doppler shift in a 400 MHz signal.
However, it can be shown that the same Doppler shift appears in the interference
signal that can be measured on the sensor node. If the relative speed of the node is
measured at multiple known points, then not only the velocity, but also the location
of the node can be determined. Hence, RIPS can be used for cooperative tracking
as well.

5. Future

In spite of the tremendous progress in wireless sensor node localization in the past
decade, a universal solution has not emerged. The picture in outdoor localization
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is becoming clear. When GPS emerged as a standard feature on mobile phones,
the economies of scale caused the price of receivers to drop sharply while their
performance kept increasing. An entry-level GPS receiver chip costs $10 today.
While its accuracy is not what a typical WSN application requires, higher end
receiver modules do provide 1 m accuracy with a clear view of the sky. Their price
is in the $200-$300 range. While the power requirements of GPS have decreased
significantly, they are still relatively high. For static deployments, however, GPS
chips can be turned off after a location has been established. That is not true for
mobile applications, but mobility itself consumes much more energy than GPS or
any electronic component does. Hence, as its limitations slowly disappear, GPS is
expected to dominate outdoor WSN applications in the future.

The interesting and difficult research challenges are in indoor localization. The
radio propagation environment in dense urban environments and inside buildings is
extremely complex and dynamic. UWB provides high precision at a high cost. Also,
because of its high bandwidth requirements, regulatory agencies limit the power
UWB can legally use, severely restricting its effective range. These two factors have
prevented UWB from widespread adoption in WSNs. Nevertheless, there is ongoing
development of UWB technologies, so it may become the ultimate solution in indoor
localization in the future.

Map-based RSSI techniques are available commercially. The most promising of
these piggyback on existing WiFi infrastructures to control the cost. Nevertheless,
map establishment is still time consuming and costly, and the dynamic RF envi-
ronment limits precision to room-level. Also, the technique is inherently limited
to long-term deployments. Military or emergency response applications, in which
rapid deployment and high accuracy are primary requirements, still lack a feasible
localization approach.

We believe that the future lies in multimodal localization. The underlying idea
is to utilize multiple sensors measuring different physical phenomena. They can
overcome each other’s limitations, or one can take over when the other becomes
unavailable in the given environment. For example, GPS can be augmented by
an Inertial Measurement Unit (IMU) as is frequently done in Unmanned Aerial
Vehicle (UAV) navigation. For mobile sensor node tracking, the IMU can be used
to provide tracking when the GPS-lock is lost, e.g., when the node moves inside
a building. Of course, the longer the tracking relies on the IMU, the larger the
error will grow. Air pressure sensors can be used to identify when the node moves
from one floor to another. A pair of cameras can be utilized to measure ranges
to objects in the environment and simultaneously build a 3D map of it. In GPS-
lacking environments, localization can also rely on signals of opportunity, such as
TV broadcast stations and cell towers. These are all active areas of research today.

The utility, availability, precision, resource requirements, price, and size of these
different sensing modalities vary greatly. The decision of what combination of which
methods to use is necessarily dictated by the requirements of the given application.
Therefore, node localization, especially indoors, will remain highly application-
dependent for the foreseeable future.
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